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ABSTRACT
Hyperparameter optimization is a critical component of the machine learning pipeline. Although there has been
much progress in this area, many methods for tuning model settings and learning algorithms are difficult to deploy
in more restrictive settings such as federated learning. Recent progress in NAS has yielded a heuristic technique–
weight-sharing, or the simultaneous optimization of multiple neural networks using the same parameters–that
presents a promising new paradigm for hyperparameter optimization. In this paper we identify weight-sharing as a
cheap, practical approach for more traditional hyperparameter optimization problems. We validate our claim with
experiments on feature map selection problems where an approach combining weight-sharing with successive
halving is able to find a good configuration much faster than full training. Finally, we propose a natural way of
using weight-sharing to perform hyperparameter optimization for federated learning that enables learning a tuned
model using data on all devices without significantly impacting on-device computation.

1 INTRODUTION

Weight-sharing has emerged as an useful optimization
paradigm to reduce the computational cost of neural ar-
chitecture search (NAS) (Pham et al., 2018; Liu et al., 2019;
Cai et al., 2019). In lieu of training multiple architectures,
weight-sharing reduces the training cost to that of a sin-
gle super-network encompassing all possible architectures.
While this computational gain comes at the expense of nois-
ier signals of the quality of different architectures, there is
evidence that weight-sharing is nonetheless able to provide
useful signals for the selection of competitive architectures
(Li & Talwalkar, 2019b; Guo et al., 2019; Zela et al., 2020).

Given NAS is a specialized instance of a hyperparameter
optimization problem, many standard hyperparameter opti-
mization methods are applicable to NAS. In this work, we
instead study the efficacy of a NAS-specific method, i.e.,
weight-sharing, for general hyperparameter optimization
problems. First, we validate the use of weight-sharing for
hyperparameter optimization with two feature map selection
experiments that demonstrate weight-sharing to be much
faster than full training while still providing a strong enough
signal to select a good configuration. Then, we propose a
weight-sharing based algorithm for federated hyperparame-
ter tuning and discuss the benefits of such an approach over
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traditional hyperparameter optimization methods.

1.1 Related Work

State-of-the-art hyperparameter optimization methods like
Hyperband (Li et al., 2017), BOHB (Falkner et al., 2018),
PBT (Jaderberg et al., 2017), and others (Kandasamy et al.,
2017; Klein et al., 2017; Wu et al., 2019) typically ex-
ploit adaptive resource allocation in the form of early-
stopping/partial training to dramatically speed up hyper-
parameter optimization. These methods work well in tra-
ditional settings where we have unlimited access to the
underlying data and can train as many models as desired.
However, these assumptions are typically violated in fed-
erated settings. We propose a novel weight-sharing based
approach for federated hyperparameter tuning in Section 4
to address some of these limitations.

2 THE WEIGHT-SHARING APPROACH TO
ARCHITECTURE SEARCH

In this section, we formalize the hyperparameter optimiza-
tion problem solved by weight-sharing approaches as a
bi-level optimization problem over a structured hypoth-
esis space. We consider a structured hypothesis space
H(W, C) = {h(c)w : w ∈ W, c ∈ C} where C is a dis-
crete set of configurations, with each c corresponding to
an induced hypothesis subclass Hc = {h(c)w : w ∈ W} of
functions h(c)w : X 7→ Y ′, parameterized by W , mapping
from some input space X to output space Y ′. For exam-
ple, in neural architecture search C is the set of all possible
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architectures in the search space andW is a subset of Rd,
where d is the number of weights needed to parameterize
the largest architecture in C. Note we can treat any search
space as discrete by taking a finite random sample from the
search space, with the guarantee that we can find a good
configuration as long as the sample is large enough.

As usual, the goal of learning is to find h
(c)
w ∈

H(W, C) with low population error `D(h
(c)
w ) =

E(x,y)∼D`(h
(c)
w (x), y) for loss ` : Y ′ × Y 7→ R and some

distribution D over sample space X × Y . One reasonable
approach is to solve the following bi-level optimization
problem given training and validation sets T, V ⊂ X × Y:

argmin
c∈C

`V (w, c)

w ∈ argmin
w′∈W

LT (w
′, c)

Here `S(w, c) = 1
|S|

∑
(x,y)∈S `(h

(c)
w (x), y) is the empir-

ical risk over S for any finite set S ⊂ X × Y and the
regularized empirical risk LT (w, c) = `T (w, c)+R(w) for
some regularization function R :W 7→ R.

Weight-sharing (Pham et al., 2018) is an optimization heuris-
tic for solving this problem in which a shared solution
w ∈ W to the inner problem is found for a relaxation of the
discrete search space (e.g. a parameterized distribution over
configurations) and subsequently used for the outer problem
to evaluate configurations c or update architecture param-
eters over the relaxed search space. It has been observed
that the shared-weights solutions w often provide a strong
signal of the quality of architecture c via `V (w, c); in fact,
simply selecting the best architecture according to `V (w, c)
from a set of uniformly sampled architectures will return a
competitive configuration (Li & Talwalkar, 2019a).

For concreteness, we describe weight-sharing for neural
architecture search with a stochastic relaxation of the search
space, in which we maintain a distribution over C. In this
case, at each iteration we sample an architecture from this
distribution, sample a mini-batch of examples from the train-
ing set T , and update the shared-weights using standard
backpropagation on the sampled architecture. We then sam-
ple a mini-batch of examples from the validation set V and
update the architecture distribution using e.g. a stochastic
estimate of the architecture gradient.

This procedure heuristically handles an important question
in any hyperparameter optimization algorithm–how to al-
locate resources to configurations– by giving more weight
to favorable configurations as encoded by the distribution.
However, unlike traditional hyperparameter optimization
methods that may also perform adaptive resource allocation,
weight-sharing maintains a single set of weights for the
joint optimization problem over weights and configurations,
instead of one set of weights per configuration. Although

this approach has some drawbacks, such as the inability to
directly tune learning parameters (e.g. regularization and
optimization routine parameters), we show in Section 4 how
these limitations can be overcome in the federated learning
setting, where maintaining a single shared model is very
natural and effective.

3 FEATURE MAP SELECTION

Here we demonstrate how weight-sharing can be used as
a tool to speed up general architecture search problems by
applying it to two feature map selection problems.

3.1 Weight-Sharing Algorithm

In the feature map selection problem we have a small set
of configurations C = {φi : X 7→ Rn for i ∈ [k]}, each
corresponding to some feature map of the input that we
plan to pass to a linear classifier drawn fromW = Rn; the
hypothesis space is then H(W, C) = {〈w, φi(·)〉 : w ∈
W, φi ∈ C}. Examples of feature maps one can consider
are random Fourier features with preprocessing and bag-of-
n-grams (BonG) featurizations of documents.

We propose the following simple combination of weight-
sharing and successive halving for finding the best feature
map using training data T and validation data V :

Assign probability pi = 1/|C| to each feature map φi
For t = 1, . . . , log2 |C| do

To each sample (x, y) ∈ T assign map φix w.p. pix

w ← argmin
w′∈Rd

λ‖w′‖22 +
∑

(x,y)∈T

`(〈w′, φix(x)〉, y)

For each feature map φi:

Assign score si ←
∑

(x,y)∈V

`(〈w, φi(x)〉, y)

Update probability pi ← 2pi1si≤Median({si:i∈[k]})

Return φi w.p. pi

Observe the equivalence to probabilistic NAS: at each step
the classifier (shared parameter) is updated using random
feature maps (architectures) on the training samples. The
distribution over them is then updated using estimated vali-
dation performance. In addition to the above probabilistic
update scheme, which uses successive halving, we also
consider an exponentiated gradient (multiplicative weights)
approach, which may be viewed as a softer version of suc-
cessive elimination.

3.2 Empirical Results

The first problem we consider is kernel ridge regression
over random Fourier features (Rahimi & Recht, 2008) on
CIFAR-10. We also study logistic regression for IMDB
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Figure 1. Validation accuracy on CIFAR-10 (left) and IMDB (right) of feature map selection with weight-sharing compared to a full
sweep of random configurations. Average over 16 seeds.

full training full training

Figure 2. Search time on CIFAR-10 (left) and IMDB (right) for feature map selection. Weight-sharing finds a configuration with almost
the same validation accuracy much faster than random search.

sentiment analysis of Bag-of-n-Gram (BonG) featurizations,
a standard NLP baseline (Wang & Manning, 2012). See
Appendix A for more details about the two search spaces
considered.

To test the performance of weight-sharing for feature map
selection, we randomly sample 64 configurations each for
CIFAR-10 and IMDB and examine whether the above
schemes converge to the optimal choice. The main compar-
ison method here is thus random search, which runs a full
sweep over these samples; by contrast successive halving
will need to solve 6 = log2 64 regression problems, while
for exponentiated gradient we perform early stopping after
five iterations. Note that weight-sharing can do no better
than random search in terms of accuracy because they are
picking a configuration from a space that random search
sweeps over. The goal is to see if it consistently returns a
good configuration much faster. As our results in Figures 1
and 2 show, successive halving indeed does almost as well
as random search in much less time.1 While exponentiated

1We expect the speedups to be higher with more configurations
and will validate this with future experiments.

gradient usually does not recover a near-optimal solution,
it does on average return a configuration in the top 10%.
We also note the strong benefit of over-parameterization for
IMDB–the n-gram vocabulary has size 4 million so the num-
ber of bins on the right is much larger than needed to learn
in a single-configuration setting. Overall, these experiments
show that weight-sharing can also be used as a fast way to
obtain signal in regular learning algorithm configuration and
not just NAS.

4 FEDERATED HYPERPARAMETER
OPTIMIZATION

In this section we argue for the viability of using weight-
sharing for hyperparameter optimization in the federated
learning setting. We are motivated by the observation that
hyperparameter tuning is a major challenge for federated
learning (Kairouz et al., 2019). In particular, because of the
ephemeral nature of multi-device learning, in which the data
is bound to the device and the number of training rounds is
limited due to computation and communication constraints,
running standard cross-validation and more sophisticated hy-
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perparameter optimization approaches necessarily involves
making use of subsets of devices to train individual config-
urations. Hence, with existing methods, we cannot update
all configurations using data from all devices, which can be
problematic when data is non-i.i.d across devices.

The promise of weight-sharing in this setting is that, no mat-
ter the final model, the data from any given device will have
contributed in some part to the final parameterization. Fur-
thermore, by treating each device as a data-point to be allo-
cated to some configuration in order to make a local update,
weight-sharing naturally aligns with the dominant method
in federated learning, Federated Averaging (FedAvg), in
which at each communication round multiple devices run
local SGD from a shared initialization before averaging the
output (McMahan et al., 2017). Finally, by formalizing the
problem as one of meta-learning, we are able to get around
the issue of not being able to tune non-architectural parame-
ters such as learning rates and regularization coefficients, as
described below.

4.1 Extending FedAvg with Hyperparameter
Optimization

We consider federated learning in the non-i.i.d. device
setting with personalization, also known as meta-learning.
Note that here the sample spaceX ×Y = {(T̃ , Ṽ ) : T̃ , Ṽ ⊂
X̃ × Ỹ, |T̃ | <∞, |Ṽ | <∞} consists of tasks/devices rep-
resented by finite training and validation set pairs T̃ , Ṽ
over data space X̃ × Ỹ . In the most general setting the
configuration space C consists of both parameters that con-
figure the on-device (within-task) update algorithm (e.g.
learning rate, weight-decay, dropout, etc.) and potentially
the model architecture, but we will focus only on config-
uring the within-task algorithm. The shared-weight pa-
rameter space determines the initialization of the within-
task update algorithm configured by a configuration c.
Thus we have H(W, C) = {h(c)w : w ∈ W, c ∈ C}
s.t. h

(c)
w : X 7→ Y ′, where Y ′ = {h̃w̃ : w̃ ∈ W}

consists of predictors h̃w̃ : X̃ 7→ Ỹ on the underlying
data space. The target loss function to minimize is then
`D(h

(c)
w ) = E(T̃ ,Ṽ )∼D

1
|Ṽ |

∑
(x,y)∈Ṽ

˜̀(h
(c)
w (T̃ )(x), y), i.e.

the validation loss of a model h(c)w (T̃ ) ∈ Y ′ trained using
initialization w and algorithm configuration c on dataset T̃ ,
with the validation and training data drawn as pairs from
some distributionD. Here ˜̀ : Ỹ × Ỹ 7→ R is a loss function
on the underlying data-space. Note that, in the standard
meta-learning setting, D is a meta-distribution over task-
distributions, so sampling T̃ , Ṽ consists of drawing such a
distribution and then sampling from it i.i.d.

We propose the following simple approach using

multiplicative-weights on top of random search:

Randomly sample a shared initialization w ∈ W
Randomly sample k configurations ci ∈ C and assign to
each an initial probability pi = 1/|C|
For communication round t = 1, . . . , n do

For each device j ∈ [b] in round t do

Get on-device data {(T̃tj , Ṽtj)}
Get configuration citj w.p. pitj

Obtain predictor h̃w̃tj = h
(citj )
w (T̃tj) by training with

configuration citj on dataset T̃tj
Score predictor using on-device validation data:

stj =
1

|Ṽtj |

∑
(x,y)∈Ṽtj

˜̀(h̃w̃tj
(x), y)

Update shared-weights: w ← 1

b

∑
j∈[b]

w̃tj

Multiplicative weights update: for each j ∈ [b] do
pitj ← pitj exp (−stj/

√
n)

Re-normalize probabilities: pi ← pi/
∑
i∈[k]

pi

Note that if the configurations consist of just one variant of
SGD we recover the basic FedAvg algorithm (McMahan
et al., 2017). Thus in each round we send model initial-
izations and some random algorithm configuration to each
device in a batch; each device updates the model using this
algorithm over on-device training data and the server then
aggregates these updates; finally, each device updates the
distribution over algorithm configurations using multiplica-
tive weights over on-device validation data. The advantage
of this approach is that by treating the on-device algorithm
as a model, we transform most of the learning hyperparam-
eters of FedAvg (in-particular the on-device learning rate)
into architectural hyperparameters.

To evaluate this method, we propose using the LEAF dataset
of federated learning benchmarks (Caldas et al., 2018), in
particular the common language-modeling datasets such as
Shakespeare. While recurrent neural network architectures
such as LSTMs (Hochreiter & Schmidhuber, 1997) have
seen heavy development for such tasks, they still require a
great deal of learning-parameter tuning, specifically of pa-
rameters such as learning rate, weight-decay, dropout, and
so on. We thus propose to focus on non-architectural param-
eters and compare the performance of the shared-weights
tuned hyperparameters against human-tuning approaches
(McMahan et al., 2017).
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Smith, V., and Talwalkar, A. LEAF: A benchmark for
federated settings. arXiv, 2018.

Chen, X., Xie, L., Wu, J., and Tian, Q. Progressive Differ-
entiable Architecture Search: Bridging the Depth Gap
between Search and Evaluation. arXiv e-prints, art.
arXiv:1904.12760, Apr 2019.

Devries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. 2017.

Falkner, S., Klein, A., and Hutter, F. Bohb: Robust and
efficient hyperparameter optimization at scale. In Inter-
national Conference on Machine Learning, 2018.

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and
Sun, J. Single path one-shot neural architecture search
with uniform sampling. 2019.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9:1735–1780, 1997.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning,
I., Simonyan, K., et al. Population based training of
neural networks. 2017.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., D’Oliveira, R. G. L., Rouayheb, S. E.,
Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi,
B., Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C.,
He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Ja-
vidi, T., Joshi, G., Khodak, M., Konečn, J., Korolova, A.,
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A FEATURE MAP SELECTION DETAILS

Solvers provided by scikit-learn (Pedregosa et al.,
2011) were used for ridge regression and logistic regression.
For CIFAR-10 we use the kernel configuration setting from
Li et al. (2018) but replacing the regularization parameter
by the option to use the Laplace kernel instead of Gaussian.
The regularization was fixed to λ = 1

2 and the data split was
the standard 40K/10K/10K.

For IMDB we consider the following configuration choices:

1. tokenizer: {remove punctuation | split on punctuation
| nltk.word tokenize} (Loper & Bird, 2002)

2. stopwords: {remove stopwords | do not remove stop-
words}

3. lowercasing: {lowercase | do not lowercase}

4. n-gram order (n includes all k-grams for 1 ≤ k ≤ n):
n ∈ [3]

5. binarizing: {binarize features | do not binarize fea-
tures}

6. feature-weights: {naive-Bayes | smoothed inverse fre-
quency} (Wang & Manning, 2012; Arora et al., 2017)

7. feature-weight smoothing parameter α: log10 α ∈
[−5, 2]

8. preprocessing: {None | `2-normalization | averaging
by number of tokens}

The regularization was fixed to C = 1 and the data split was
25K/12.5K/12.5K
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