
On Data Efficiency of Meta-learning

Maruan Al-Shedivat Liam Li Eric Xing Ameet Talwalkar
CMU Determined AI CMU, Petuum Inc. CMU, Determined AI

Abstract

Meta-learning has enabled learning statistical
models that can be quickly adapted to new
prediction tasks. Motivated by use-cases in
personalized federated learning, we study the
often overlooked aspect of the modern meta-
learning algorithms—their data efficiency. To
shed more light on which methods are more
efficient, we use techniques from algorithmic
stability to derive bounds on the transfer risk
that have important practical implications,
indicating how much supervision is needed
and how it must be allocated for each method
to attain the desired level of generalization.
Further, we introduce a new simple framework
for evaluating meta-learning methods under
a limit on the available supervision, conduct
an empirical study of MAML, Reptile, and
ProtoNets, and demonstrate the differences
in the behavior of these methods on few-shot
and federated learning benchmarks. Finally,
we propose active meta-learning, which incor-
porates active data selection into learning-to-
learn, leading to better performance of all
methods in the limited supervision regime.

1 Introduction

One of the emerging applications of meta-learning [1, 2,
3] is the problem of personalization in federated learning
settings [4, 5, 6]. Multiple recent works have explored
the parallels between personalizing models to different
users in a federated context and adapting models to
different tasks in a multitask context [7, 8, 9, 10]. While
the initial results from these efforts are promising, there
are still many open questions when it comes to applying
meta-learning to personalization in federated settings.

Preprint. Preliminary version.
An updated version is to appear in AISTATS 2021.

In this work, we aim to understand which of the modern
meta-learning algorithms, and under which conditions,
are best suited for personalization.

It is tempting to extrapolate the performance of meta-
learning methods on standard few-shot learning bench-
marks [11, 12, 13] to the federated learning setting.
Unfortunately, the training and evaluation routines
used for benchmarking violate some of the modeling
assumptions of federated learning and potentially other
real-world scenarios. Specifically, the current practice
is to train meta-learning methods on a large number
of programmatically constructed supervised few-shot
tasks sampled from an underlying labeled meta-dataset
and then evaluate them on a small set of test tasks [14].
This approach implicitly assumes a full control over
and an unrestricted access to the training data, allows
to train on combinatorially many tasks that reuse the
underlying labeled data and, as a result, ignores the
associated labeling costs. In personalization, however,
when tasks correspond to different users and labels cor-
respond to user-specific preferences, ratings, etc., the
data is private and cannot be reused across multiple
tasks and labeling user data can be quite costly, which
makes existing evaluation practices often ill-suited.

For a learning-to-learn method to work well in federated
settings, it must be data efficient and able to generalize
to new tasks under a limit on the available supervision.
Our work is motivated by the current lack of basic
understanding of generalization properties of modern
meta-learning algorithms. To this end, we analyze
theoretically two major families of modern algorithms—
gradient-based (MAML [15] and Reptile [16]) and
metric-based (ProtoNets [17])—and characterize how
the number of training tasks and the number of labeled
data points per task affect performance of each method.

To validate our theory and understand data efficiency
of different methods in practice, we further introduce
an alternative evaluation framework for meta-learning,
where we measure performance as a function of the
supervision budget or the total amount of labeled data
across training tasks. Despite the conceptual simplicity,
our framework allows to compare meta-learning algo-
rithms under more realistic assumptions and reveals in-

ar
X

iv
:2

10
2.

00
12

7v
1

 [
cs

.L
G

]
 3

0
Ja

n
20

21

On Data Efficiency of Meta-learning

teresting and practically relevant tradeoffs. Finally, to
improve data efficiency a step further, we introduce ac-
tive meta-learning—a method-agnostic approach that
extends meta-learning with active data selection at
training time and yields improved empirical perfor-
mance on the benchmarks under limited supervision.

Contributions.

1. We characterize data-efficiency of modern meta-
learning methods theoretically using techniques
from algorithmic stability [18, 19, 20] and provide
generalization bounds that indicate how much
supervision is needed and how it must be allocated
for each method to attain the desired performance.

2. We analyze MAML, Reptile, and ProtoNets
experimentally both on the standard Omniglot
and mini-ImageNet meta-datasets as well as on
federated learning benchmarks [21]. Our results
support predictions of the stability theory, reveal
the relative differences between the methods in the
limited supervision regime, and provide insights
into how to best allocate the available supervision.

3. Finally, we benchmark meta-learning methods
with and without active data selection at training
time and demonstrate improved performance of
active meta-learning under limited supervision.

2 Related Work

Meta-learning theory. Our analysis builds on the
classical notion of algorithmic stability of Bousquet and
Elisseeff [18] and extends the bounds of Maurer [19]
to modern gradient-based and metric-based methods.
Recent theoretical work on meta-learning has largely
focused on gradient-based methods in online settings
[8, 22, 23, 24, 25], providing sharper bounds but under
stronger assumptions on smoothness and convexity
than those required by our stability theory. Several
other works have studied convergence properties of
gradient-based meta-learning from the optimization
standpoint rather than generalization [e.g., 26, 27].
To the best of our knowledge, none of the previous
work provides sufficient insight into the data efficiency
aspects of modern meta-learning algorithms.

Federated learning. While the classical problem of
federated learning involves estimation of a single, global
model from heterogeneous data [28], many recent works
have pointed out the growing importance of tailoring
models to each individual user [4, 10]. Gradient-based
meta-learning has been explored empirically [7, 9] and
analyzed theoretically [29] as a natural choice for this
problem. However, personalization in federated settings
is still in a fairly nascent state [5] and our work aims
to make a step toward better understanding of meta-
learning in this new context.

Active learning. Combinations of active and few-
shot learning have been explored in prior work in multi-
ple settings: Woodward and Finn [30] analyzed active-
learning in a streaming setting. Boney and Ilin [31]
showed that active learning can improve performance
at test time on new tasks, but did not consider active
learning at meta-training time. The works of Bachman
et al. [32] and Ravi and Larochelle [33] most closely
resemble our setup, but neither approach was evalu-
ated in the limited supervision regime or considered
the problem of personalization in federated learning.

3 Background

We start by introducing the preliminaries necessary to
state our theoretical results as well as overview the key
elements of modern meta-learning algorithms.1

3.1 Meta-learning Formulation

Meta-learning operates in a multi-task setting, where
the goal is to design a meta-algorithm A that can pro-
cess data from multiple tasks {T1, T2, . . .} and output a
learning algorithm A. Given a task Ti, the latter must
be able to produce an accurate model for that task. In
the context of federate learning (FL), tasks correspond
to users and are represented by their personal datasets.

A meta-algorithm is data-efficient if a small number of
training tasks (with only few data points per task) is
sufficient for it to produce a good learning algorithm.
Assuming that all tasks originate from a common un-
derlying distribution, T ∼ P, we are interested in meta-
generalization of A, i.e., how many training tasks and
how much data per task is necessary to ensure a certain
level of performance on future tasks sampled from P.

In this paper, we focus on few-shot classification [12],
where a learning task Ti is defined by a small i.i.d.
sample of size m (called the support set [34]) that con-
sists of (x, y)-pairs, Si := {(xj , yj)}mj=1 ∼ Dmi , where
Di ∼ P. Formally, meta-learning can be formulated as
a search problem over some family of algorithms A:

min
A∈A
{R (A,P) := ED∼P [ES∼Dm [R(A(S),D)]]} , (1)

whereR (f,D) := E(x,y)∼D [` (f(x), y)] . (2)

The objective R(A,P) given in Eq. 1 is called the
transfer risk [35] and is defined as the expected error
encountered by models fi(·) := A(Si) produced by the
learning algorithm A on new tasks Ti sampled from
P. Transfer risk characterizes how well an algorithm A
meta-generalizes over a task distribution P.

1We assume that the reader is generally familiar with
gradient-based and metric-based meta-learning [15, 16, 17].
Our overview is mainly focused on establishing the notation.

Maruan Al-Shedivat, Liam Li, Eric Xing, Ameet Talwalkar

The algorithms from family A are typically designed to
be able to learn from the limited support data. Meta-
learning methods vary in how they define A, which
may consist of iterative optimization procedures [13,
15, 16], approximate inference [36, 37, 38, 39], or nearest
neighbor approaches [12, 17], among many other hybrid
methods proposed in recent years [e.g., 40, 41, 42]. The
methods also differ in terms of the objective functions
they optimize to minimize the transfer risk Eq. 1, as
the latter cannot be computed or optimized directly.

Notation. Throughout the paper, we denote data
samples with S (or Q), learning algorithms with A,
models that these algorithms produce after processing
data samples with f(·) or A(S)(·); subscripts next to
A indicate the variables that parametrize algorithms.
Similarly, meta-samples (i.e., sets of data samples for
multiple tasks) and meta-algorithms (i.e., procedures
that return algorithms) are denoted with S and A,
respectively. The number of training tasks is denoted
by n and the number of data points per task by m.

3.2 Generalization in Meta-learning

The formulation of meta-learning given in Eq. 1 was
originally introduced by Baxter [35], who derived the
first bounds on the excess transfer risk (i.e., meta-
generalization error bounds). For meta-algorithms A
that produce learning algorithms A by optimizing a
loss L, we can define meta-generalization as follows.

Definition 1 (Meta-generalization Error Bound)
Let A be a meta-algorithm which, given a meta-sample
S := {S1, . . . , Sn} from n tasks, outputs an algorithm,
A(S) := argminA∈A L(A,S). A two-argument function
B(δ, S) is called a meta-generalization error bound
for A if for any task distribution P and δ ∈ (0, 1], the
following inequality holds with probability at least 1− δ:

R(A(S),P)− L(A(S),S) ≤ B(δ, S) (3)

Maurer [19] developed a general technique for obtaining
such bounds B(δ, S) using algorithmic stability [18]. In
Section 4, we will specialize Maurer’s bounds to modern
meta-learning algorithms.

3.3 Modern Meta-learning Algorithms

In this paper, we study three popular meta-learning
methods that represent two broad categories: gradient-
based (MAML [15] and Reptile [16]) and metric-based
(ProtoNets [17]). We have selected these methods as
many recent algorithmic developments in meta-learning,
few-shot learning, and their applications are variations
of those three [e.g., 28, 43, 44, 40, 42, 7]. However,
conclusions of our study are broadly applicable to the
majority of modern meta-learning.

Gradient-based meta-learning defines the family
of algorithms A as iterative optimization procedures:
A(S) := argminθ∈Θ L(fθ;S). MAML and Reptile
are gradient-based methods that approximately solve
this minimization problem using an inner loop of T
(stochastic) gradient steps with a learning rate α start-
ing from a common initialization θ0 shared across tasks:

Aθ0(S) := fθT , where θt+1 := θt −α∇θtL(fθt ;S). (4)

In this case, meta-learning amounts to search for an op-
timal initialization θ?0 , which is done via the outer-loop
optimization of another objective function L(Aθ0 ; S).
The key difference between MAML and Reptile is
the loss L they optimize in the outer loop. Reptile
optimizes the empirical estimator of the transfer risk:2

Lemp(Aθ0 ;S) :=
1

n

n∑
i=1

R̂(Aθ0 , Si), (5)

R̂(Aθ0 , Si) :=
1

|Si|
∑

(x,y)∈Si

`(Aθ0(Si)(x), y), (6)

while MAML holds out a sub-sample of S—called the
query set [15], which we denote Q—and optimizes an
estimator of the transfer risk based on the held out set:

LQ(Aθ0 ;S) :=
1

n

n∑
i=1

R̂Q(Aθ0 , Si), (7)

R̂Q(Aθ0 , Si) :=
1

|Qi|
∑

(x,y)∈Qi

`(Aθ0(Si \Qi)(x), y).

(8)

As we will see, this difference in the meta-objectives will
result in different meta-generalization bounds as well as
different empirical behavior and practical implications.
We note that the most commonly used algorithm in
federated learning [FedAvg, 28] is identical to Reptile
without fine-tuning at test time [7, 8, 9].

Metric-based meta-learning methods define the
family of algorithms A that return non-parametric
soft-nearest-neighbor models. ProtoNets is one of
such methods that computes prototype vectors for each
class in the inner loop and returns the following models:

Aθ(S)(x) := argmax
y∈Y

exp(−d(gθ(x), cy)∑
y′∈Y exp(−d(gθ(x), cy′)

, (9)

cy :=
1

|Sy|
∑

(x,·)∈Sy

gθ(x), ∀y ∈ Y (10)

where the distance d(·, ·) is computed in the embedding
space of gθ(·) and the so called class prototypes cy are
computed by averaging embeddings of the correspond-
ing support points. In the outer loop, ProtoNets
optimize the same LQ(Aθ;S) objective as MAML.

2More precisely, Reptile updates θ0 iteratively: θ0 ←
θ0 + ε 1

n

∑n
i=1(θi − θ0), where θi = Aθ0(Si), ε > 0. These

updates approximately minimize Lemp (see Appendix A).

On Data Efficiency of Meta-learning

4 Analysis

We adapt results from the stability theory of stochastic
gradient methods [20] and extend the classical bounds
provided by Maurer [19] to MAML, Reptile, and
ProtoNets. We also make a few key observations
about their expected behavior of these methods when
the number of tasks and data points per task is limited,
which is of practical importance to federated settings.
All proofs are provided in Appendix B.

4.1 Understanding Meta-generalization via
Algorithmic Stability

As Definition 1 suggests, meta-generalization error is
the discrepancy between the objective L(A;S) opti-
mized by a meta-learning method and the true transfer
risk R(A,P). If the objective function is the empirical
estimator Lemp(A;S), then following bound holds [19]:

R(A(S),P)− Lemp(A(S);S)

≤ 2β′ + (4nβ′ +M)

√
ln(1/δ)

2n
+ 2β

(11)

with probability at least 1−δ; β′ and β define stability3

of the meta-learning algorithm A and of any learning
algorithm A it produces, respectively. Generally, β′
and β are functions of the number of training tasks n
and data points per task m and depend on the specific
algorithms. Maurer’s bound becomes non-trivial when
β′ = o(1/na), a ≥ 1/2 and β = o(1/mb), b ≥ 0.

To derive bounds for modern meta-learning algorithms,
we need two additional results. First, for algorithms
that optimize the Q-estimator LQ(A;S) instead of the
Lemp(A;S) of the transfer risk, we need to bound on
the difference R(A(S),P)−LQ(A(S); S). We prove the
following theorem that provides such a bound.

Theorem 2 Let A be β′Q-uniformly stable with respect
to R̂Q. Then, the following indequality holds for any
task distribution P with probability at least 1− δ:

R(A(S),P)− 1

n

n∑
i=1

R̂Q(A(S), Si)

≤ 2β′Q + (4nβ′Q +M)

√
ln(1/δ)

2n

(12)

where R̂Q(A,Si) := 1
|Qi|

∑
(x,y)∈Qi

`(A(Si \ Qi)(x), y)
with `(·, ·) bounded by M .

Note that the bound in Eq. 12 lacks the term 2β which
depends on the stability of the inner loop learning
algorithm and is present in Eq. 11.

3Intuitively, an algorithm (or meta-algorithm) is called
stable if removing a single point from S (or S) would not
affect its output by much. Precise definitions of algorithmic
stability are provided in Appendix B.

To be able to compare the generalization of Reptile,
MAML, and ProtoNets, we need expressions for β,
β′, β′Q, as functions of the number of training tasks n
and the number of data points per taskm. Using results
from stability theory of stochastic gradient method
(SGM) due to Hardt et al. [20] and bounds in Eqs. 11
and 12, we arrive at the following theorem.

Theorem 3 Let the meta-algorithm A be an SGM that
optimizes an L′-Lipschitz and γ′-smooth loss L(A,S) by
taking T ′ steps with non-increasing step sizes α′t ≤ c′/t.
With probability at least 1− δ, we have the following:

1. If L(A;S) is Q-estimator of the transfer risk, then
the following bound holds:

R(A,P)− L(A;S) ≤ O

(
L′2T ′

√
ln(1/δ)

n

)
(13)

2. If L(A;S) is the empirical estimator of the trans-
fer risk, the inner loop learning algorithm A is an
SGM that optimizes L-Lipschitz and γ-smooth loss
`(f(x), y) by taking T steps with step sizes αt ≤ c/t:

R(A,P(T))− L(A;S)

≤ O

(
L′2T ′

√
ln(1/δ)

n
+ L2T

1

m

)
(14)

The bound in Eq. 13 is applicable to ProtoNets and
MAML; the one given in Eq. 14 applies to Reptile.

Observations. We can make the following observa-
tions by comparing expression in Eq. 13 and Eq. 14:

O1. When n → ∞, the generalization error of any
meta-learning method to which bound in Eq. 13
applies (e.g., MAML, ProtoNets) goes to 0.

O2. The bound for Reptile has an additive term
O(L2T/m) compared to MAML or ProtoNets.
This implies that while we can reduce the general-
ization gap for MAML/ProtoNets by training
on more tasks, Reptile always has a non-zero
gap due to within-task sample complexity.

O3. The bound in Eq. 13 may seem to be independent
of the support set size m. This is unlikely, as the
Lipschitz and smoothness constants of the L(A,S)
objective must depend on the properties of the
support sets in S, with larger sets more likely to
results in better-behaved meta-objective.4 Our
analysis suggests that the dependence of Eq. 13
on m and n is multiplicative rather than additive
in Eq. 14, which means that a large enough n can
perhaps compensate for a small m in Eq. 13.

4In practice, we observe that training ProtoNets and
MAML on the same number of tasks but with larger sup-
port sets leads to better meta-test performance consistently,
suggesting that larger support sets are generally better.

Maruan Al-Shedivat, Liam Li, Eric Xing, Ameet Talwalkar

4.2 Implications for Meta-learning in the
Limited Supervision Regime

The observations we have made in the previous section
have important practical implications.
Improving evaluation. To measure data-efficiency
of meta-learning methods, as O1 suggests, we should
control for the number of tasks at meta-training time,
since otherwise the observed differences in performance
will not be indicative of generalization. However, all
popular few-shot classification benchmarks based on
Omniglot, mini -ImageNet, and other datasets [14] train
on tasks generated programmatically by randomly sam-
pling support sets from a large underlying data pool.
Such a construction provides access to combinatorially
many training tasks, virtually setting n→∞. Instead
of training on an endless stream of tasks, we propose an
alternative evaluation scheme, where we strictly limit
the number of unique tasks available at training time.
Not only our evaluation scheme corresponds to the
standard FL setting, where we have a limited number
of users for meta-training, but also is compatible with
the popular few-shot learning benchmarking datasets.
Understanding tradeoffs. In federated settings,
acquisition of supervised data has an associated cost:
in some cases, the number of users might be large, but
tasks may require manual data labeling (e.g., prompt
users about their preferences); in other cases, manual
data labeling may not be necessary or expensive, but
the number of unique users might be limited. To select
the best meta-learning method for a given problem,
we need understand the tradeoffs. O2 suggests that
using Reptile might be suboptimal if tasks have very
small support sets; at the same time, MAML and
ProtoNets are likely to work better when trained on
more tasks with fewer labels allocated to each task.
Optimally allocating the labeling budget. Even
when the labeling budget, the number of tasks, and the
support sets are all fixed, we often have additional flex-
ibility in terms of which support points to label in each
task. The standard approach is to select these points
uniformly at random. Based on O3, we hypothesize
that carefully selected support sets may lead to better-
behaved meta-losses and improve meta-generalization.

5 Active Meta-learning Algorithms

We conjecture that actively selecting labeled support
points can potentially improve performance of meta-
learning methods in the limited supervision regime.
Assuming that we are given a hard labeling budget B
and a set of training tasks with unlabeled support sets,
we propose an algorithm that allocates this budget
among the tasks (m points per task) during meta-
training by adaptively selecting which points to label.

Algorithm 1 Active Meta-learning
input P: task distribution, B: labeling budget, L: # labels

per task, Aθ(·): learning algorithm, select_labeled(·):
active labeling, meta_update(·): meta-learning update.

1: repeat
2: Initialize: θ ← θ0, D ← ∅.
3: if B > 0 and time to get new tasks then
4: Sample a new unlabeled set: Su ∼ P.
5: Initialize labeled support set: Sl ← ∅.
6: for l in 1 . . . L do
7: Sl ← Sl ∪ select_labeled(D,Aθ(Sl)).
8: end for
9: Update training tasks: D ← D ∪ {SL}.
10: Reduce available budget: B ← B − L.
11: end if
12: Sample a batch of tasks: {Si} ∼ D.
13: Meta-learn: θ ← meta_update(Aθ, {Si}).
14: until Convergence
output Meta-learned algorithm: Aθ? .

Algorithm 2 Active Label Selection
input Su: unlabeled set, θ0: initial parameters,

gθ(·): embedding function, fθ(·): predictive model,
Aθ(·): learning algorithm, L: # labels to sample.

1: Initialize: θ ← θ0.
2: Compute representations: ri ← gθ(xi), xi ∈ Su
3: Compute predictive entropy: hi ← H(fθ(xi)), xi ∈ Su
4: Get clusters: C ← k-means++({hi}).
5: Initialize the labeled set: Sl ← ∅.
6: for all cj ∈ C do
7: Sample L/|C| points from cluster cj :

{i1, . . . , iL/|C|} ∼ Categorical
(
{hi}i∈cj

)
8: Request labels: Sl ← Sl ∪ {(xik , yik)}

l
k=1.

9: Update models: gθ, fθ ← Aθ(Sl).
10: end for
output Labeled set: {(xi1 , yi1), . . . , (xiL , yiL)}

Active meta-learning. We propose Algorithm 1 for
active meta-learning, which gradually acquires labels
for selected support points at meta-training time and
proceeds in 3 steps: 1) start with a fully unlabeled
support set (lines 4-5), 2) run an active label selection
sub-routine that selects and labels a few points from the
support set (line 6-8), 3) add the task with the labeled
support set to the growing collection of training tasks
(lines 9-10). Importantly, the active sampling procedure
is integrated into the inner loop, where our approach
interleaves active labeling with model adaptation. Put
differently, instead of selecting support points that are
labeled all at once, we sample them in mini-batches and
re-adapt the model on already sampled points before
requesting the next batch (Algorithm 2, lines 6-10).

Active labeling. Algorithm 1 relies on active label-
ing as a subroutine. We designed a very simple active
labeling method (Algorithm 2), which uses model uncer-
tainty and data diversity as the selection criteria, which
are most common in the active learning literature [45].
Given an unlabeled support set for a new task, first,
we compute representations for each point by extract-
ing them form a hidden layer of the current model

On Data Efficiency of Meta-learning

0 20 40
Training tasks (x 10K)

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y 98.7 ± 0.4% 98.8%
Omniglot (5w-1s)

0 20 40
Training tasks (x 10K)

99.9 ± 0.1% 99.7%
Omniglot (5w-5s)

MAML
MAML [15]

ProtoNet
ProtoNet [17]

Figure 1: Test accuracy of MAML and ProtoNets
trained under different constraints on the number of training
tasks. The difference between the method is only visible
when we control for the number of training tasks. Shaded
regions are 95% CI (based on 3 runs with different seeds).

and clusters them using k-means++ [46]. Next, we
compute predictive probabilities of the current model
for each unlabeled point and select points that will
be labeled proportionally to the model’s uncertainty
with stratification by cluster. We use the entropy of
the model’s predictive distribution as the measure of
model’s uncertainty. Our approach is simple, works
well, and is essentially a combination of uncertainty-
and diversity-based active label acquisition [47, 48].

6 Experiments

Our experimental analysis is organized into two parts.
In the first part, we validate the predictions of our
theory by analyzing behavior of MAML, Reptile, and
ProtoNets under different supervision tradeoffs on
the standard few-shot learning datasets. In the second
part, we benchmark these methods on few-shot and
federate learning datasets with a fixed total labeling
budget and random versus active data labeling.

6.1 The Setup

Datasets. We conduct our study on Omniglot [11]
and mini -ImageNet [12] with the standard data splits
into train, validation, and test, and federated EMNIST
dataset [21]. We consider 5-way and 20-way classifica-
tion tasks with 1-5 support shots and 1 query shot for
Omniglot and mini -ImageNet. For EMNIST, each task
is a 62-way classification with the data correspond-
ing to a unique user (all 3400 users were split into
train/validation/test sets as 3000/200/200), where we
similarly limit the support data to 1-5 shots and use the
full tests sets of each user as query sets. Note that our
personalized federated learning setup slightly differs
from the standard FL benchmarks where the amount
of support data per user is not restricted to 1-5 points.
No data augmentation is used in any of our settings.

Models and methods. We consider 3 meta-learning
methods: MAML, Reptile, and ProtoNets, using
the standard hyperparameters and small convolutional
backbone networks [15, 16, 17].

Labeling budgets and strategies. In Omniglot
and mini -ImageNet, each k-way task is constructed by
first selecting k handwritten characters as classes, then
selecting a 1-shot query set and a small support set
from the corresponding data. In EMNIST, the classes
are fixed for all tasks, each task corresponds to a user,
the support sets are selected from the users’ training
data and test data is used as query sets. The labeled
points in the support sets are either selected uniformly
at random or actively using Algorithm 2.

Evaluation. All methods are trained either (a) in
the classical regime, where we do not control for the
the number of training tasks or the total amount of
labeled data, or (b) in the limited supervision regime,
where the total amount training labeled data is limited.
We report performance in terms of accuracy in each
setting, denoted [dataset] (Xw-Ys) (@ Z), where X
is the number of ways, Y is the number of shots, and Z
is the labeling budget.5 For each labeling budget, we
report the accuracy on the test tasks for the method
with hyperparameters selected based on the accuracy
on the validation tasks. Each of our experiments was
repeated 3 times with different random seeds.

Reproducibility. To support reproducibility, we
have developed a software framework that allows users
benchmark arbitrary meta-learning methods under dif-
ferent supervision tradeoffs. The code and configura-
tions for all our experiments will be released.

All additional details on the setup are in Appendix C.

6.2 Understanding Supervision Tradeoffs

To validate the implications of our theory (O1-3), we
conduct the following study. First, we analyze the dif-
ferences in behavior of meta-learning methods when
the number of training tasks is limited. Next, we ana-
lyze how the tradeoff between the number of tasks and
the number of data points per task affect performance
of different methods. Finally, we discuss the effect of
active data labeling on meta-learning.

Classical evaluation vs. limited supervision.
We ask whether different meta-learning methods be-
have differently when trained and evaluated in the
classical vs. limited supervision regime. To answer
this question, we trained MAML and ProtoNets on
5-way, 1-shot and 5-shot Omniglot benchmark under
different limits on the number of training tasks (ranging
between 1-500K). Fig. 1 shows that the performance of

5The Z is not specified for the classical training regime.

Maruan Al-Shedivat, Liam Li, Eric Xing, Ameet Talwalkar

1 3 5
Support shots

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y MAML
Omniglot (5w-1s @ 300K)

1 3 5
Support shots

0.6

0.8

1.0
Reptile

Omniglot (5w-1s @ 300K)

1 5
Support shots

0.3

0.4

0.5

0.6
MAML

ImageNet (5w-1s @ 300K)

1 5
Support shots

0.3

0.4

0.5

0.6
Reptile

ImageNet (5w-1s @ 300K)
random
active
strat
strat + active

Figure 2: Test accuracy of MAML and Reptile trained on Omniglot and mini-ImageNet under a limit on the available
supervision (the total labeling budget was fixed at 300K) as a function of the number of support shots. MAML and
Reptile exhibit visibly different behaviors. Error bars indicate 95% CI (based on 3 runs with different random seeds).

1 3 5 10 15
Support shots

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y 97.68 ± 0.04%
Omniglot (5w-1s)

1 3 5 10 15
Support shots

0.6

0.8

1.0
99.48 ± 0.06%

Omniglot (5w-5s)

1 3 5 10 15
Support shots

0.2

0.3

0.4

0.5
49.97 ± 0.32%

mini-ImageNet (5w-1s)

1 3 5 10 15
Support shots

0.4

0.6

65.99 ± 0.58%
mini-ImageNet (5w-5s)

Nichol et al. [16]
random
active

Figure 3: Test accuracy of Reptile meta-trained for 100K steps without controlling for the number of training tasks
(i.e., classical evaluation regime) as a function of the support set size of the training tasks. The dashed line corresponds
to test accuracy of Reptile reported by Nichol et al. [16] (trained in the same regime with 10 support shots and data
stratification by class). Error bars indicate 95% CI (based on 3 runs with different random seeds).

MAML and ProtoNets is virtually indistinguishable
in the classical evaluation regime.6 However, once the
number of training tasks is limited, we observe quite a
distinct behavior—MAML works better when trained
on 1-shot tasks, while ProtoNets dominate the 5-
shot benchmark. Moreover, as the number of tasks
increases (n→∞ in the limit), the generalization error
reduces at a similar rate for both methods and the gap
between them shrinks, as suggested by our theory.

Exploring tradeoffs under limited supervision.
In our next set of experiments, given a fixed labeling
budget, we would like to find out how different ways of
allocating supervision across tasks affects performance.
To this end, we fixed the labeling budget at 300K,
and constructed meta-datasets based on Omniglot and
mini -ImageNet that satisfied the limit on the labeling
budget. Each meta-dataset consisted of 5-way tasks
with 1-shot, 3-shot, or 5-shot support sets that were
selected using different labeling strategies. Due to fixed
labeling budget, settings with larger support sets had
fewer training tasks. In addition to selecting labels
uniformly at random and actively, we also conducted
experiments with selection stratified by class.7 The
results for MAML and Reptile are presented in Fig. 2.

6When the number of training tasks is not limited, 10M+
unique tasks are typically generated during training.

7Stratification ensured that the selected support sets
where class-balanced. Although typical in meta-learning,
such an approach requires knowing all labels in the support
set a priori, narrowing the scope of possible applications.

First, we notices that MAML is able to attain much
better performance when trained on more tasks with
fewer labels per task, suggesting that the number of
tasks is indeed the dominant factor that determines how
well the method generalizes. Interestingly, Reptile
exhibits quite the opposite behavior and yields strictly
better performance when trained on overall fewer tasks
with more data points each. This is consistent with the
meta-generalization error bounds given in Theorem 3
which has an additional O(1/m) term for Reptile that
turns out to be dominant in this particular case.

Second, active selection of labeled data is beneficial for
both methods, although Reptile benefits from it more.
Theoretically, we hypothesise (and conjecture) that the
effect might be due to improved constants in each terms
of the meta-generalization bounds (i.e., due to “better-
behaved” inner- and outer-loop objectives, when the
labeled points are selected to minimize the uncertainty
of the adapted model). Note that the effects of active
label selection and more data per task on Reptile are
also visible in the classical evaluation regime (see Fig. 3,
where the number of training tasks was not controlled).

Taken together, our observations suggest that there are
multiple factors that significantly affect performance of
meta-learning in different ways, when the availability
of training data is limited. While some of the effects of
limited supervision can be reasonably explained by the
stability theory, from a practical point of view, having
benchmarks that can capture such effects is essential.

On Data Efficiency of Meta-learning

Table 1: Results on the suite of bounded supervision bench-
marks for Reptile, MAML, and ProtoNets trained using
random (R) or active (A) selection of the labeled support.
Each row in the table corresponds to a benchmark.

Benchmark Reptile MAML Proto
Dataset Budget R A R A R A

O
m

ni
gl

ot

5w-1s 30K 73.3 77.2 83.3 79.6 84.8 84.5
300K 76.8 80.1 91.8 93.6 92.2 94.3

5w-5s 30K 89.3 88.0 91.5 90.2 95.1 96.8
300K 92.4 93.0 96.3 96.9 97.0 98.1

20w-1s 60K 68.4 67.9 79.0 79.8 84.9 85.4
600K 76.3 77.8 84.8 83.9 86.1 87.9

20w-5s 60K 89.8 92.4 93.3 94.1 95.2 96.0
600K 92.0 94.1 95.5 95.9 96.8 96.8

Im
ag

eN
et 5w-1s 30K 38.5 39.4 44.2 44.0 42.9 40.7

300K 42.0 41.9 45.4 45.2 39.9 41.0

5w-5s 30K 55.4 55.2 56.8 57.1 54.0 53.4
300K 56.7 59.4 60.8 61.0 57.4 55.8

E
M

N
IS

T

62w-1s 10K 69.6 67.9 73.9 70.7 74.0 73.3
50K 77.5 75.9 80.3 79.1 78.2 78.0

100K 82.0 84.5 86.7 87.7 88.8 90.1

62w-5s 10K 78.1 80.1 68.3 75.0 71.2 72.9
50K 84.3 85.8 76.0 79.4 77.1 76.8

100K 87.1 89.0 82.5 86.3 86.1 88.5

Table 2: FedAvg vs. Reptile on EMNIST with random
or active labeling. The labeling budget was fixed to 100K.
Error bars indicate 95% CI (3 runs, different random seeds).

FedAvg Reptile
shots Random Active Random Active

1 77.1±2.0 77.8±2.1 82.2±1.6 84.2±1.9
5 80.7±2.4 79.6±1.8 87.0±2.1 89.1±1.5

6.3 Benchmarking @ Fixed Labeling Budgets

There are many tradeoffs that we need to consider and
balance when selecting a meta-learning algorithm for
a setting with limited labeling budget. To enable fair
and reproducible comparison of meta-learning methods
in different regimes, we introduce a suite of new bench-
marks that test performance at different fixed labeling
budgets. Our benchmarks are compatible with both
few-shot learning and federated learning datasets.

Table 1 presents results for each pair of meta-learning
method and labeling strategy (random vs. active).
For each pair, we selected the best performance across
settings with 1, 3, and 5 support shots at training time,
and report results on both 1-shot and 5-shot test tasks.

Omniglot and mini-ImageNet. Comparing ran-
dom versus active data labeling, we observe that active
selection almost always consistently improves perfor-
mance. Overall, ProtoNets dominate other methods
on Omniglot; MAML does better on mini -ImageNet.
Reptile performs significantly worse than other meth-
ods when a strict limit on the labeled data is enforced.

Federated EMNIST. We observe overall similar
trends for all methods evaluated in our personalized
federated learning setting. Interestingly, however, Rep-
tile (with active data selection) tends to dominate
other methods on 5-shot version of this benchmark.
This is likely due to the fact that the query sets in
EMNIST larger than for Omniglot and mini -ImageNet,
which benefits Reptile since it does not distinguish
between support and query sets and uses all available
labeled data for inner loop updates.

For completeness purposes, we also compare Reptile
and FedAvg [28] (the most popular FL algorithm
used in many practical settings) and present results in
Table 2. These algorithms differ only in whether or not
they fine-tune the model on the support data at test
time. Reptile uses fine-tuning and clearly outperforms
FedAvg on our personalized FL benchmarks.

7 Conclusion

Motivated by use-cases of meta-learning for personal-
ization in federated learning, we have analyzed theo-
retically and experimentally the data efficiency of two
major families of modern meta-learning algorithms.

Using stability theory, we derived bounds on the trans-
fer risk (or meta-generalization error). Our bounds
revealed that: 1) Reptile and other methods designed
to meta-learn by optimizing the empirical estimator of
the transfer risk do not work well unless each training
task contains a sufficient number of labeled points; 2)
ProtoNets, MAML, and other methods designed
to meta-learn by optimizing held out set losses can
effectively learn from data-scarce tasks but require a
large number of such tasks to meta-generalize.

Further, through multiple experiments, we confirmed
predictions of our theory as well as studied behavior
of popular meta-learning algorithms under different
supervision tradeoffs that have important practical im-
plications. To that end, we introduced a new approach
to benchmarking meta-learning methods in the limited
supervision regime, which is compatible with arbitrary
few-shot and federated learning datasets.

Finally, we conjectured that selecting labeled support
sets at meta-training actively can improve performance
of meta-learning methods in the limited supervision
regime. To test that hypothesis, we proposed active
meta-learning—a simple approach that incorporated
active labeling into the inner-loop. Our method turned
out to be quite effective, leading to improved perfor-
mance of multiple methods under limited supervision.

We hope that this study will further accelerate research
and enable wider adoption of meta-learning in person-
alized federated learning and other practical settings.

Maruan Al-Shedivat, Liam Li, Eric Xing, Ameet Talwalkar

Acknowledgments

The authors thank Mikhail Khodak, Harri Edwards, Af-
shin Rostamizadeh, Jenny Gillenwater for helpful com-
ments on early versions of this manuscript. This work
was supported in part by DARPA FA875017C0141,
the National Science Foundation grants IIS1705121
and IIS1838017, an Amazon Web Services Award, a
JP Morgan A.I. Research Faculty Award, a Carnegie
Bosch Institute Research Award, a Facebook Faculty
Research Award, and a Block Center Grant. MA was
supported by Google PhD Fellowship. LL contributed
to this work while at CMU. Any opinions, findings
and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessar-
ily reflect the views of DARPA, the National Science
Foundation, or any other funding agency.

References

[1] Yoshua Bengio, Samy Bengio, and Jocelyn
Cloutier. Learning a synaptic learning rule. Uni-
versité de Montréal, Département d’informatique
et de recherche opérationnelle, 1990.

[2] Jürgen Schmidhuber. Learning to control fast-
weight memories: An alternative to dynamic re-
current networks. Learning, 4(1), 1992.

[3] Sepp Hochreiter, A Steven Younger, and Peter R
Conwell. Learning to learn using gradient descent.
In International Conference on Artificial Neural
Networks, pages 87–94. Springer, 2001.

[4] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi,
and Ameet S Talwalkar. Federated multi-task
learning. In Advances in Neural Information Pro-
cessing Systems, pages 4424–4434, 2017.

[5] Peter Kairouz, H Brendan McMahan, Brendan
Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Gra-
ham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv
preprint arXiv:1912.04977, 2019.

[6] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and
Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Pro-
cessing Magazine, 37(3):50–60, 2020.

[7] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and
Xiuqiang He. Federated meta-learning with fast
convergence and efficient communication. arXiv
preprint arXiv:1802.07876, 2018.

[8] Mikhail Khodak, Maria-Florina F Balcan, and
Ameet S Talwalkar. Adaptive gradient-based meta-
learning methods. In Advances in Neural Infor-
mation Processing Systems 32, 2019.

[9] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and
Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning.
arXiv preprint arXiv:1909.12488, 2019.

[10] Tao Yu, Eugene Bagdasaryan, and Vitaly
Shmatikov. Salvaging federated learning by lo-
cal adaptation. arXiv preprint arXiv:2002.04758,
2020.

[11] Brenden M Lake, Ruslan Salakhutdinov, and
Joshua B Tenenbaum. Human-level concept learn-
ing through probabilistic program induction. Sci-
ence, 350(6266):1332–1338, 2015.

[12] Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information
processing systems, pages 3630–3638, 2016.

[13] Sachin Ravi and Hugo Larochelle. Optimization
as a model for few-shot learning. 2016.

[14] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin,
Pascal Lamblin, Kelvin Xu, Ross Goroshin, Carles
Gelada, Kevin Swersky, Pierre-Antoine Manzagol,
and Hugo Larochelle. Meta-dataset: A dataset of
datasets for learning to learn from few examples.
arXiv preprint arXiv:1903.03096, 2019.

[15] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th In-
ternational Conference on Machine Learning, vol-
ume 70, pages 1126–1135, 2017.

[16] Alex Nichol, Joshua Achiam, and John Schulman.
On first-order meta-learning algorithms. CoRR,
abs/1803.02999, 2, 2018.

[17] Jake Snell, Kevin Swersky, and Richard Zemel.
Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Sys-
tems, pages 4077–4087, 2017.

[18] Olivier Bousquet and André Elisseeff. Stability
and generalization. Journal of machine learning
research, 2(Mar):499–526, 2002.

[19] Andreas Maurer. Algorithmic stability and meta-
learning. Journal of Machine Learning Research,
6(Jun):967–994, 2005.

[20] Moritz Hardt, Benjamin Recht, and Yoram
Singer. Train faster, generalize better: Stabil-
ity of stochastic gradient descent. arXiv preprint
arXiv:1509.01240, 2015.

[21] Sebastian Caldas, Peter Wu, Tian Li, Jakub
Konečnỳ, H Brendan McMahan, Virginia Smith,
and Ameet Talwalkar. Leaf: A benchmark for fed-
erated settings. arXiv preprint arXiv:1812.01097,
2018.

On Data Efficiency of Meta-learning

[22] Maria-Florina Balcan, Mikhail Khodak, and
Ameet Talwalkar. Provable guarantees for
gradient-based meta-learning. In International
Conference on Machine Learning, 2019.

[23] Chelsea Finn, Aravind Rajeswaran, Sham Kakade,
and Sergey Levine. Online meta-learning. In
International Conference on Machine Learning,
2019.

[24] Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi,
and Massimiliano Pontil. Learning-to-learn
stochastic gradient descent with biased regular-
ization. In International Conference on Machine
Learning, 2019.

[25] Giulia Denevi, Dimitris Stamos, Carlo Ciliberto,
and Massimiliano Pontil. Online-within-online
meta-learning. In Advances in Neural Information
Processing Systems, 2019.

[26] Luca Franceschi, Paolo Frasconi, Saverio Salzo,
Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization
and meta-learning. In International Conference
on Machine Learning, 2018.

[27] Alireza Fallah, Aryan Mokhtari, and Asuman
Ozdaglar. On the convergence theory of gradient-
based model-agnostic meta-learning algorithms. In
International Conference on Artificial Intelligence
and Statistics, pages 1082–1092, 2020.

[28] H Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, et al. Communication-efficient
learning of deep networks from decentralized data.
arXiv preprint arXiv:1602.05629, 2016.

[29] Zachary Charles and Jakub Konečnỳ. On the out-
sized importance of learning rates in local update
methods. arXiv preprint arXiv:2007.00878, 2020.

[30] Mark Woodward and Chelsea Finn. Active one-
shot learning. arXiv preprint arXiv:1702.06559,
2017.

[31] Rinu Boney and Alexander Ilin. Semi-supervised
few-shot learning with prototypical networks.
arXiv preprint arXiv:1711.10856, 2017.

[32] Philip Bachman, Alessandro Sordoni, and Adam
Trischler. Learning algorithms for active learning.
In International Conference on Machine Learning,
pages 301–310, 2017.

[33] Sachin Ravi and Hugo Larochelle. Meta-learning
for batch mode active learning, 2018. URL https:
//openreview.net/forum?id=r1PsGFJPz.

[34] Sebastian Thrun and Lorien Pratt. Learning to
learn. Springer Science & Business Media, 2012.

[35] Jonathan Baxter. A model of inductive bias learn-
ing. Journal of artificial intelligence research, 12:
149–198, 2000.

[36] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda,
Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in non-
stationary and competitive environments. In Inter-
national Conference on Learning Represenations,
2018.

[37] Erin Grant, Chelsea Finn, Sergey Levine, Trevor
Darrell, and Thomas Griffiths. Recasting gradient-
based meta-learning as hierarchical bayes. arXiv
preprint arXiv:1801.08930, 2018.

[38] Marta Garnelo, Dan Rosenbaum, Christopher
Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and
SM Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning,
pages 1690–1699, 2018.

[39] Chelsea Finn, Kelvin Xu, and Sergey Levine. Prob-
abilistic model-agnostic meta-learning. In Ad-
vances in Neural Information Processing Systems,
pages 9516–9527, 2018.

[40] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski,
Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with la-
tent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

[41] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-
Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. arXiv preprint
arXiv:1904.04232, 2019.

[42] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin,
Katja Hofmann, and Shimon Whiteson. Fast con-
text adaptation via meta-learning. In Interna-
tional Conference on Machine Learning, pages
7693–7702, 2019.

[43] Yan Duan, Marcin Andrychowicz, Bradly Stadie,
OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba.
One-shot imitation learning. In Advances in neural
information processing systems, pages 1087–1098,
2017.

[44] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li.
Meta-sgd: Learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835, 2017.

[45] Burr Settles. Active learning literature survey.
Technical report, University of Wisconsin-Madison
Department of Computer Sciences, 2009.

[46] David Arthur and Sergei Vassilvitskii. k-means++:
The advantages of careful seeding. Technical re-
port, Stanford, 2006.

[47] Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou.
Active learning by querying informative and rep-
resentative examples. In Advances in neural infor-
mation processing systems, pages 892–900, 2010.

https://openreview.net/forum?id=r1PsGFJPz
https://openreview.net/forum?id=r1PsGFJPz

Maruan Al-Shedivat, Liam Li, Eric Xing, Ameet Talwalkar

[48] Fedor Zhdanov. Diverse mini-batch active learning.
arXiv preprint arXiv:1901.05954, 2019.

[49] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

On Data Efficiency of Meta-learning

A Reptile Optimizes Lemp(A; S)

The Reptile meta-learning algorithm [16] is defined as follows. Given a model fθ parametrized by θ, it defines the
inner loop algorithm Aθ0 as a T -step stochastic gradient optimization:

Aθ0(Si) := θiT , where θit+1 := θit − αt∇θit

 1

|Si|
∑

(x,y)∈Si

`(fθt(x), y)

 (15)

In the outer loop, it updates θ0, which is shared across all tasks, as follows:

θ0 ← θ0 − ε
1

n

n∑
i=1

(θ0 −Aθ0(Si)), ε > 0 (16)

We argue that Reptile outer loop updates (16) approximate gradient descent on the empirical estimator of the
transfer risk:

Lemp(Aθ0 ;S) :=
1

n

n∑
i=1

R̂(Aθ0 , Si), R̂(Aθ0 , Si) :=
1

|Si|
∑

(x,y)∈Si

`(Aθ0(Si)(x), y) (17)

To understand why this is the case, first, consider the gradient of Lemp(Aθ0 ;S) with respect to θ0:

∇θ0Lemp(Aθ0 ;S) =
1

n

n∑
i=1

∇θ0R̂(Aθ0 , Si) (18)

=
1

n

n∑
i=1

1

|Si|
∑

(x,y)∈Si

∇θ0`(Aθ0(Si)(x), y) (19)

=
1

n

n∑
i=1

1

|Si|
∑

(x,y)∈Si

∇θiT `(fθiT (x), y)[∇θ0Aθ0(Si)] (20)

Now, we can compute the difference between ∇θ0R̂(Aθ0 , Si) and the Reptile update Aθ0(Si)− θ0:

(θ0 −Aθ0(Si))−∇θ0R̂(Aθ0 , Si) =
1

|Si|
∑

(x,y)∈Si

[(
T∑
t=1

αt∇θit`(fθit(x), y)

)
−∇θiT `(fθiT (x), y)[∇θ0Aθ0(Si)]

]
(21)

Expression in the square brackets is the difference between T inner loop gradient steps on `(fθ(x), y) and the
gradient at the final T -th step transformed by the Jacobian ∇θ0Aθ0(Si). This expression was analyzed by Nichol
et al. [16] using perturbation theory and Taylor approximation, where it was shown that this difference is equal
to the following:(

T∑
t=1

αt∇θit`(fθit(x), y)

)
−∇θiT `(fθiT (x), y)[∇θ0Aθ0(Si)] = (I − αHT

θ0)

T−1∑
t=1

∇θit`(fθit(x), y) +O(α2) (22)

where HT
θ0

is the Hessian of `(fθT (x), y) at θ0, α := maxt∈[1,T] αt.

Assuming that α (i.e., the inner loop step size) is sufficiently small and the norm of ∇θ`(fθ(x), y) is bounded by
some constant G, the difference in (22) is bounded by (1− αλmax(H

T
θ0
))G(T − 1) +O(α2), which implies:

(θ0 −Aθ0(Si))−∇θ0R̂(Aθ0 , Si) ≤ (1− αλmax(H
T
θ0))G(T − 1) +O(α2) (23)

The deviation between ∇θ0Lemp and Reptile updates would be small when the inner loop objective is well behaved
(has a small G), the number of inner loops steps T is not too large and the step sizes α are small, which would
ensure convergence of Reptile to a stationary point of Lemp. We leave sharper analysis of the convergence rates in
the case of non-convex and convex `(·, ·) to future work.

Maruan Al-Shedivat, Liam Li, Eric Xing, Ameet Talwalkar

B Proofs

In this section, we provide detailed expressions for meta-generalization bounds, proofs for Theorems 2 and 3,
statements (and proof sketches where necessary) for classical auxiliary results, and further discuss the implications
and limitations of our analysis.

B.1 Classical Bounds on Meta-generalization Error

The meta-generalization bounds provided in Section 4 directly extend of the following classical result by Maurer
[19] (which in turn uses meta-learning formulation of Baxter [35] and is a direct adaptation of the algorithmic
stability bounds of Bousquet and Elisseeff [18]).

Theorem 4 (Theorem 1 from [19]) Let the meta-algorithm A satisfy the following two conditions:

C1. For every pair of meta-samples S = {S1, . . . , Sn}, S−i := S\{Si}, and for any sample S, we have |R̂(A(S), S)−
R̂(A(S−i), S)| ≤ β′.

C2. For any pair of samples S = {(x1, y1), . . . , (xm, ym)}, S−j := S \ {(xj , yj)}, any algorithm A produced by A,
and any (x, y), we have |`(A(S)(x), y)− `(A(S−j)(x), y)| ≤ β.

Then for any task distribution P(T), with probability at least 1− δ the following inequality holds:

R(A(S),P(T))− Lemp(A(S);S) ≤ 2β′ + (4nβ′ +M)

√
ln(1/δ)

2n
+ 2β, (24)

where Lemp(A(S); S) := 1
n

∑n
i=1 R̂(A(S), Si), R̂(A,Si) :=

1
|Si|
∑

(x,y)∈Si
`(A(Si)(x), y) with the loss function `(·, ·)

bounded by M .

Conditions C1 and C2 in Theorem 4 define uniform stability (i.e., sensitivity of the algorithm to removal of an
arbitrary point from the training sample [18]) and state that the bound holds if the meta-algorithm A and every
algorithm A it produces are uniformly β′- and β-stable with respect to the empirical risk R̂ and a loss function `,
respectively. The bound becomes non-trivial when β′ = o(1/na), a ≥ 1/2 and β = o(1/mb), b ≥ 0.

Theorem 4 provides a bound on the difference between the transfer risk R[A(S),P(T)] and its empirical estimator
Lemp(A(S);S) based on meta-sample S, implying that a small Lemp(A(S);S) guarantees meta-generalization
within the bound. Denoting A ≡ A(S) to simplify our notation, the bound is obtained as follows:

R(A,P(T))− Lemp(A;S) = ED∼P(T)

[
ES∼Dm

[
R̂(A,S)

]]
− 1

n

n∑
i=1

R̂(A,Si) + (25)

ED∼P(T)

[
ES∼Dm

[
R(A(S),D)− R̂(A,S)

]]
(26)

The term (25) is the difference between the expected empirical risk over the true distribution of tasks and its
estimate Lemp(A;S) based on the meta-sample S. As long as A is β′-uniformly stable with respect to R̂(A,S)
(C1, Theorem 4), this term is bounded by 2β′+ (4nβ′+M)

√
ln(1/δ)/2n, which follows directly from the classical

result of Bousquet and Elisseeff [18].

The term (26) is the estimation error of a model f(·) = A(S) learned by A from S with respect to the data
distribution D, computed in expectation over the distribution of tasks P(T). Stability of the inner-loop (C2,
Theorem 4) directly implies a bound of 2β on this term (see Theorem 6 in [19]). Putting together bounds of
terms (25) and (26), we arrive at (24).

B.2 Bounding Meta-generalization of Reptile, MAML, and ProtoNets

The bound given in (24) is on the generalization error, i.e., the deviation of the true transfer risk R from the
empirical estimator Lemp, and has meaningful practical implications only when the meta-algorithm A minimizes
Lemp. As we have shown in A, Lemp(A;S) is the meta-training objective function optimized by Reptile, and thus
the bound from Theorem 4 applies directly. However, MAML and ProtoNets optimize LQ(A; S), so we have to

On Data Efficiency of Meta-learning

bound R(A,P)−LQ(A; S) instead, which can be decomposed into two terms similar to (25) and (26), where R̂ is
replaced by R̂Q and S is replaced by S \Q (since samples from the query set Q are not used in the inner-loop).
The bound on the first term will not change much as we can still directly apply results from stability theory
with the only caveat that we would require β′Q-uniform stability of the meta-algorithm with respect to R̂Q. The
second term, however, vanishes:

ES∼Dm

[
R(A(S \Q),D)− R̂Q(A,S)

]
= ES\Q∼Dm−k

R(A(S \Q),D)− EQ∼Dm−k

 1

|Q|
∑

(x,y)∈Q

`(A(S \Q)(x), y)

 ≡ 0 (27)

This allows us to reformulate Theorem 4 and obtain the following generalization bound applicable to any
meta-learning method that optimizes R̂Q in the outer loop, including MAML and ProtoNets.

Theorem 5 Let the meta-algorithm A satisfy the following two conditions:

C1. For every pair of meta-samples S = {S1, . . . , Sn}, S−i := S \ {Si}, and for any sample S, we have
|R̂Q(A(S), S)− R̂Q(A(S−i), S)| ≤ β′Q.

C2. For any pair of samples S = {(x1, y1), . . . , (xm, ym)}, S−j := S \ {(xj , yj)}, any algorithm A produced by A,
and any (x, y), we have |`(A(S)(x), y)− `(A(S−j)(x), y)| ≤ β.

Then for any task distribution P(T), with probability at least 1− δ the following inequality holds:

R(A(S),P)− LQ(A(S);S) ≤ 2β′Q + (4nβ′Q +M)

√
ln(1/δ)

2n
, (28)

where LQ(A(S);S) := 1
n

∑n
i=1 R̂Q(A(S), Si), R̂Q(A,Si) :=

1
|Qi|

∑
(x,y)∈Qi

`(A(Si Qi)(x), y) with the loss function
`(·, ·) bounded by M .

Since MAML, Reptile, and ProtoNets use stochastic gradient method (SGM) for solving the outer loop optimization
problem, and Reptile additionally uses SGM in the inner loop as well, we further adopt the following general
result from stability theory of SGM due to Hardt et al. [20].

Lemma 6 (Theorem 3.12 in [20]) Let `(·, z) ∈ [0, 1] be L-Lipschitz and γ-smooth loss function for every z.
Suppose that we optimize 1

n

∑n
i=1 `(θ, zi) by running SGM for T steps with monotonically non-increasing step

sizes αt ≤ c/t. Then, SGM is β-uniformly stable with

β ≤ 1 + 1/(γc)

n− 1
(2cL2)1/(γc+1)T 1−1/(γc+1) (29)

Combining Theorems 4, 5, and 6 we finally arrive at the meta-generalization error bounds for modern meta-learning
algorithms.

Theorem 7 Let the meta-algorithm A be an SGM that optimizes an L′-Lipschitz and γ′-smooth loss L(A;S) by
taking T ′ steps with non-increasing step sizes α′t ≤ c′/t. With probability at least 1− δ, we have the following:

1. If L(A;S) is Q-estimator of the transfer risk, then the following bound holds:

R[A,P(T)]− L(A;S) ≤ B′(n, T ′, L′, γ′, c′) ≈ O

(
L′2T ′

√
ln(1/δ)

n

)
(30)

2. If L(A;S) is the empirical estimator of the transfer risk and the inner loop learning algorithm A is an SGM
that optimizes L-Lipschitz and γ-smooth loss `(f(x), y) by taking T steps with non-increasing step sizes
αt ≤ c/t, then:

R[A,P(T)]− L(A;S) ≤ B′(n, T ′, L′, γ′, c′) +B(m,T, L, γ, c) ≈ O

(
L′2T ′

√
ln(1/δ)

n
+ L2T

1

m

)
(31)

Maruan Al-Shedivat, Liam Li, Eric Xing, Ameet Talwalkar

Proof Conditions of the theorem and Lemma 6 imply that A is β′-(or β′Q-)uniformly stable and the coefficient
can be expressed through the Lipschitz and smoothness constants of Lemp (or LQ). This leads to the following
expression for B′(n, T ′, L′, γ′, c′):

B′(n, T ′, L′, γ′, c′) =
2C

n

(
1 +

1

n− 1

)
+ 2C

√
2 ln(1/δ)

n

(
1 +

1

n− 1
+
M

4C

)
, (32)

where C := (1 + 1/(γ′c′))(2c′L′2)1/(γ
′c′+1)T ′1−1/(γ′c′+1). The simplified expression given in (30) upper-bounds

(32). Similarly, if each algorithm A produced by the meta-algorithm A is an SGM on the Lemp objective, using
Lemma 6 we arrive at the following expression for B(m,T, L, γ, c):

B(m,T, L, γ, c) = 2β ≤ 2
1 + 1/(γc)

m− 1
(2cL2)1/(γc+1)T 1−1/(γc+1) ≈ O

(
L2T

1

m

)
(33)

where the approximation ignores terms associated with c and γ. The statement of the theorem now follows from
Theorems 4 and 5 and the derived expressions.

Besides the implications of our theory discussed in the main text, we can make a few more interesting observations.

What happens if we use empirical estimator of the transfer risk as the objective for MAML? In
principle, we can make MAML optimize Lemp instead of LQ in the outer loop. Nichol et al. [Section 6.3, 16]
considered an interesting setup in their ablation study, where they analyzed how the overlap between the support
and query data affects performance of the the first-order version of MAML. Note that the larger the overlap, the
closer MAML’s objective becomes to Lemp. Interestingly, they show that larger overlaps lead to the performance
degradation on the Omniglot dataset. This result is consistent with our theory—switching MAML’s objective to
Lemp necessarily leads to larger meta-generalization error characterized by the additional 2β term in the bound.

Implications for federated learning. In federated learning research, one of the most popular algorithms is
federated averaging (FedAvg) [28], which uses model updates that are mathematically equivalent to Reptile. The
tasks are defined by the (private) datasets available on different client devices (e.g., mobile phones). Our theory
suggests that federated-averaging-style updates might be suboptimal for applications where the available labeled
data for each client is very small; at the same time, when each client has sufficient data (as in the EMNIST
dataset), we observe empirically superiority of Reptile/FedAvg over MAML (Section 6.3). Designing personalized
federated learning algorithms that learn by optimizing a combination of Lemp (on clients with a lot of data) and
LQ (on clients with very small datasets) objectives is an interesting research avenue to explore next.

C Details on the Experimental Setup

We provide details on the experimental setup used throughout the paper, including model architectures (often
termed backbone networks in the few-shot learning literature) and hyperparameters for meta-learning methods.
Additionally, our full experimental configurations can be found in the provided supplementary code in the
corresponding conf/ folders, which enables full reproducibility.

C.1 Network Architectures

For all our experiments, we used the standard Conv4 backbone network architectures proposed in the original
papers [15, 17, 16]. The embeddings computed by the last hidden layer of the backbone networks were subsequently
used for clustering in our active sampling approach. MAML and Reptile used a linear final layer to compute
logits from the embeddings, while ProtoNets used the distances between the query and support samples in the
embedding space for computing class probabilities.

Omniglot and EMNIST. Input images were resized to 28 × 28. Models used by all methods consisted of 4
convolutional layers with 64 filters, kernel size of 3, and strides of 2, followed by batch normalization and ReLU
activations (with no pooling or dropout in the intermediate layers).

mini-ImageNet. Input images were resized to 84× 84. Models used by all methods consisted of 4 convolutional
layers with 32 filters, kernel size of 3, and strides of 2, followed by batch normalization and ReLU activations
(with no pooling or dropout in the intermediate layers).

On Data Efficiency of Meta-learning

Table 3: Meta-test performance with unbounded supervision.

Method O-5w-1s O-5w-5s O-20w-1s O-20w-5s MI-5w1d MI-5w5d

MAML 98.3±0.6 99.9±0.1 95.0±0.5 98.6±0.5 48.7±1.7 63.0±0.9
Reptile 94.9±0.2 98.2±0.5 88.2±0.4 96.4±0.4 47.8±1.3 61.9±1.1
Protonets 97.9±0.4 99.0±0.1 91.9±1.2 98.6±0.5 48.3±0.8 66.2±0.8

C.2 Meta-learning Algorithms

Meta-training (i.e., the outer loop optimization) was performed using Adam optimizer [49] with learning rate of
0.005 and β1 = 0 for MAML and ProtoNets. For Reptile, following parameters provided by Nichol et al. [16], the
outer loop learning rate was set 1.0 and the optimizer set to stochastic gradient descent (SGD). Details on model
adaptation are provided below.

MAML [15]. At training time, we used 5 inner loop gradient descent (GD) steps with a learning rate of 0.01.
At evaluation time, the number of inner loop steps was set to 10. To implement first order adaptation updates,
we nullified the second order derivatives when computing the meta-training loss.

Reptile [16]. At training time, we used 10 inner loop gradient descent (GD) steps with a learning rate of 0.001
for Omniglot and 0.0005 for mini -ImageNet. At evaluation time, the number of inner loop steps was set to 50.

Prototypical Networks [17]. We used a version of the method with the Euclidean distance. The method has
no other hyperparameters besides those of the outer loop optimizer.

C.3 Calibration

We selected the hyperparameters described above such that the meta-test performance of all methods nearly
matched the reported numbers in the original papers in the limited supervision regime. Results for the calibrated
models are reported in Table 3.

A note on Reptile. Nichol et al. [16] used 10-shot tasks at meta-training time and trained for over 100,000
meta-updates (each meta-update was computed on a batch of 20 tasks) in order to attain the performance
reported in the original paper. In the limited supervision setting, this would have required a label budget of over
100M (i.e., 1000 times larger than those considered in our study). However, just for calibration purposes, we
matched the original setup of Nichol et al. [16].

A note on ProtoNets. To improve performance, Snell et al. [17] proposed to meta-train ProtoNets on tasks
with higher number of classes than the tasks used at meta-test time (e.g., meta-training on 60-way tasks while
meta-testing on 20-way tasks). Even though training tasks with more classes could be helpful in learning better
data representations, increasing the number of classes per task affects the amount of labeled points required
per task and may affect performance of non-oracle label selection strategies. Therefore, in our experiments,
we decided to stick with a clean setup that matches the number of classes per task at both meta-training and
meta-test times, although sacrificing some performance gains. Again, for calibration purposes only, we used an
increased number of classes per task at meta-training time.

C.4 Limitations

To avoid a combinatorially large number of combinations of architectures, algorithms, and their hyperparameters,
we had to fix many of these variables before experimenting with different labeling budgets and sampling strategies.
While this allowed us to conduct a fairly comprehensive study of 3 different meta-learning methods across a
variety of regimes, the reported results may be limited to the specific choice of the setup described above; we
do not exclude the possibility that the behavior of different methods might vary with the setup (e.g., tuning
hyperparameters for each labeling budget separately, while extremely costly, might have rectified poor performance
of some of the methods on some of the benchmarks).

	1 Introduction
	2 Related Work
	3 Background
	3.1 Meta-learning Formulation
	3.2 Generalization in Meta-learning
	3.3 Modern Meta-learning Algorithms

	4 Analysis
	4.1 Understanding Meta-generalization via Algorithmic Stability
	4.2 Implications for Meta-learning in the Limited Supervision Regime

	5 Active Meta-learning Algorithms
	6 Experiments
	6.1 The Setup
	6.2 Understanding Supervision Tradeoffs
	6.3 Benchmarking @ Fixed Labeling Budgets

	7 Conclusion
	A Reptile Optimizes Lemp(A; S)
	B Proofs
	B.1 Classical Bounds on Meta-generalization Error
	B.2 Bounding Meta-generalization of Reptile, MAML, and ProtoNets

	C Details on the Experimental Setup
	C.1 Network Architectures
	C.2 Meta-learning Algorithms
	C.3 Calibration
	C.4 Limitations

